Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi,* Shu Zhang, Xiangshan Wang and Qiya Zhuang

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@163.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.114$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 2-amino-4-(4-fluorophenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-benzo[b]pyran-3-carboxylate

The title compound, $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}$, was synthesized by the reaction of 4 -fluorobenzaldehyde with 5,5-dimethyl-1,3-cyclohexanedione and ethyl cyanoacetate. The pyran ring adopts a boat conformation, while the fused six-membered ring adopts a distorted boat conformation.

Comment

Benzopyrans possess a wide range of pharmacological activities (Bloxham et al., 1994; Nawwar et al., 1991; Zamocka et al., 1991). The use of water as a solvent in organic chemistry was rediscovered in the 1980s (Breslow \& Rideout, 1980). As part of our program aimed at developing new selective and environmentally friendly methodologies for the preparation of fine chemicals (Shi et al., 2003), we carried out a reaction employing water as the reaction medium. We report here the X-ray crystal structure of the title compound, (I).

(I)

The pyran ring adopts a boat conformation (Fig. 1 and Table 1); atoms C8, C13, C14 and C15 are coplanar, with atoms O1 and C 7 deviating from the plane by 0.120 (1) and 0.258 (1) Å, respectively. A similar distortion was observed in the structure of 2-amino-7,7-dimethyl-4-(3-fluorophenyl)-5-oxo-3-ethoxycarbonyl-5,6,7,8-tetrahydro-4H-benzo(b)pyran (Sharanina et al., 1986). In addition, the $\mathrm{N}-\mathrm{C} 14$ bond length of 1.330 (2) \AA is shorter than the typical $\mathrm{Csp}^{2}-\mathrm{N}$ distance (Lorente et al., 1995). The fused six-membered ring adopts a distorted boat conformation; atoms $\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$ and C13 are coplanar, while atoms C 11 and C 12 deviate from the plane by 0.761 (1) and 0.212 (1) \AA, respectively. Molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2).

Experimental

The title compound, (I) (m.p. 433-434 K), was prepared by the reaction of 4-fluorobenzaldehyde with 5,5-dimethyl-1,3-cyclohexanedione and ethyl cyanoacetate in the presence of triethylbenzylammonium chloride in water. Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Received 18 August 2003
Accepted 9 September 2003
Online 18 September 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The molecular packing in the crystal structure of (I).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}$
$M_{r}=359.39$
Triclinic, $P \overline{1}$
$a=8.266$ (1) \AA
$b=9.773$ (1) \AA
$c=12.375(2) \AA$
$\alpha=81.40(1)^{\circ}$
$\beta=73.41(1)^{\circ}$
$\gamma=82.15(1)^{\circ}$
$V=942.6(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.266 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 32 \\
& \quad \text { reflections } \\
& \theta=3.1-15.1^{\circ} \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.50 \times 0.46 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction: ψ scan
$\quad(X S C A N S ;$ Siemens, 1994$)$
$\quad T_{\min }=0.937, T_{\max }=0.964$
3694 measured reflections
3316 independent reflections
2258 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.114$
$S=1.00$
3316 reflections
247 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0652 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
Extinction coefficient: 0.040 (4)

Table 1
Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$.

O1-C13	$1.3686(19)$	$\mathrm{C} 7-\mathrm{C} 15$	$1.514(2)$
$\mathrm{O} 1-\mathrm{C} 14$	$1.3770(19)$	$\mathrm{C} 8-\mathrm{C} 13$	$1.336(2)$
N-C14	$1.330(2)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.359(2)$
C7-C8	$1.505(2)$		
C13-O1-C14	$118.45(12)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{O} 1$	$122.24(15)$
$\mathrm{N}-\mathrm{C} 14-\mathrm{O} 1$	$109.95(15)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 7$	$120.74(15)$
C15-C7-C8-C9	$159.77(13)$	$\mathrm{N}-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-1.7(3)$
C13-C8-C9-C10	$3.3(2)$	$\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 15-\mathrm{C} 14$	$-103.32(17)$
C11-C12-C13-C8	$15.1(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.87(2)$	$2.03(2)$	$2.889(2)$	$170.6(19)$
$\mathrm{N}-\mathrm{H} 1 A \cdots \mathrm{O} 4$	$0.90(2)$	$2.04(2)$	$2.688(2)$	$128.1(18)$

Symmetry code: (i) $1+x, y, z$.
The amino $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ atoms were refined isotropically. The positions of the other H atoms were fixed and distances to H atoms were set by SHELXTL (Sheldrick, 1997) [C-H = 0.93-0.98 \AA and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $\operatorname{SHELXTL}$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the Natural Science Foundation of Jiangsu Education Committee (grant No. 00KJB 150008) for financial support.

References

Bloxham, J., Dell, C. P. \& Smith, C. W. (1994). Heterocycles, 38, 399-408.
Breslow, R. \& Rideout, D. C. (1980). J. Am. Chem. Soc. 102, 7816-7817.
Lorente, A., Galan, C. \& Fonseca, I. (1995). Can. J. Chem. 73, 1546-1555.
Nawwar, G. A. M., Abdelarazck, F. M. \& Swcllam, R. H. (1991). Arch. Pharm. 342, 875-877.
Sharanina, L. G., Nesterov, V. N., Klokol, G. V., Rodinovskaya, L. A., Shklover, V. E., Sharanin, Yu. A., Struchkov, Yu. T. \& Promonenkov, V. K. (1986). Zh. Org. Khim. 22, 1315-1322.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA.
Shi, D. Q., Zhang, S., Zhuang, Q. Y., Wang, X. S., Tu, S. J. \& Hu, H. W. (2003). Chin. J. Chem. In the press.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zamocka, J., Misikova, E. \& Durinda, J. (1991). Pharmatine, 46, 610.

